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l. INTRODUCTION

With the continuing advances in computing hardware and the advent of
dedicated parallel processors, it is possible to place more and more com-
puting power in small devices. This increased capability is particularly
important for real-time image processing applications which require extre-
mely high throughput. Examples of such application areas are robotic
vision, medical diagnosis and military target acquisition and tracking,
such as SDI. Current algorithms tend to be ad hoc in nature, typically
consisting of a cascade of processors which in some cases work at cross
purposes. For example, a 2D filter 1is often used to reduce noise with high
spatial frequency content, However, this operation tends to blur edges
which must be detected later to determine object boundaries. A more
suitable approach would be to combine edge detection and noise reduction in
a single step, if possible. Such an approach would have the potential for
increased performance, particularly at low signal/noise ratios, where false

alarm and miss rates tend to increase rapidly in current systems.

Future image processing systems should be able to solve a varlety of image

understanding problems, such as:

L image segmentation

L surface reconstruction

L stereo matching

L] determining structure from motion.

The field of computational vision is dedicated to solving these types of

problems and has been developing rapidly over the past fifteen years.
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Within the last four years, some exclting developments have occurred which
show great promise in providing coordinated solutions to these problems
utilizing distributed algorithms. These developments are based on uti-
lizing a probabilistic framework. The two-dimensional image is modeled as
a random field which has to be estimated in real time from a set of noisy
ambiguous measurements from multiple sensors. A Bayesian viewpoint is
adopted, in which the prior knowledge 1is expressed as a probability distri-
bution. Using a probabilistic description of the observation noise, the
posterior distribution of the random field can be computed. These models
are based on the use of Markov random fields and the Gibbs distribution.
Significantly, these assumptions lead to distributed algorithms which may
be implemented on parallel processors. There are several other important
advantages in using this approach (Morroquin, Mitter and Poggio, 1986). It
is possible to model both plecewise continuous surfaces and the boundaries
between smooth patches (targets, clouds, objects, e.g.). It provides a
general framework for solving all of the problems mentioned above. The
parameters that appear in the reconstruction algorithms have a precise sta-

tistical interpretation which may be validated on physical grounds.

l.1 Computational Vision Systems

The standard definition of computational vision {s that it is inverse
optics. The direct problem-the problem of classical optics-or computer
graphics-is to determine the images of three-dimensional objects.
Computational vision is confronted with inverse problems of recovering sur-

faces from images. Much information i{s lost during the imaging process
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that projects a three-dimensional world into two~dimensional arrays

=

(images). As a consequence, vision must rely on natural constraints, that

is, general assumptions about the physical world to derive an unambiguous

output. This 1s typical of many inverse problems in mathematics and phy-

%

gn S

sics.

The first part of vision - from images to surfaces - has been called

[
L

oy

early vision. The common characteristics of most early vision problems, in

e
o
Y

a sense their deep structure, can be formalized: early vision problems are

ill-posed in the sense defined by Hadamard (Pogglo and Torre (1984)). A

A%

problem is well-posed when its solution (a) exists, (b) is unique and (c¢)

depends continuously on the initial data. 1ll-posed problems fail to

Yoz

satisfy one or more of these criteria.

R

o
.

1.2 Standard Regularization in Early Vision

»
-

The main idea for "solving”™ ill-posed problems is to restrict the class

vt
o
LI

of admissible solutions suitable a priori knowledge. 1In standard regulari-

*
‘
-

zation methods, due mainly to Tikhonov, the regularization of the ill-posed
.. problem of finding z from the data y: Az = y requires the choice of norms

- |{+]| and of a stabilizing functional ||Pz]|

« In standard regularization
theory, A is a linear operator, the norms are quadratic and P is linear. A

” method that can be applied is:

Find z that minimizes |[Az - y||2 + A[|Pz[|2, where X is a so-called

l.‘.l- . ‘.'

regularization parameter.

In this method, A controls the compromise between the degree of regu-

N larization of a solution and 1ts closeness to the data. P embeds the phy-
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sical constraints of the problem. It can be shown for quadratic
variational principles that under mild conditions the solution space is

convex and a unique solution exists.

Poggio et al (1984, 1985) show that several problems in early vision
can be “"solved” by standard regularization techniques. Surface
reconstruction, optical flow at each point in the image, optical flow
along contours, color, stereo can be computed by using standard regulariza-
tion techniques. Variational principles that are not exactly quadratic but
have the same form as that above can be used for other problems in early
vision. The main results of Tikhonov can, in fact, be extended to some

cases in which the operators A and P are nonlinear, provided they satisfy

certain conditions. (Morozov, 1984.)

1.3 Limitations of Standard Regularization Theory

Standard regularization theory with linear A and P is equivalent to
restricting the space of solution to generalized splines, whose order
depends on the order of the stabilizer P, This means that in some cases
the solution is too smooth, and cannot be faithful in locations where
discontinuities are present. In optical flow, surface reconstruction and
stereo, discontinuities are in fact not only present, but also the most
critical locations for subsequent visual information processing. Standard
regularization cannot deal well with another critical problem of vision,
the problem of fusing information from different early vision modules.
Since the regularizing principles of the standard theory are quadratic,

they lead to linear Euler-Lagrange equations. The output of different
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modules can therefore be combined only in a linear way. Terzopoulous
(1984; see also Pogglo et al., 1985) has shown how standard regularization
techniques can be used in the presence of discontinuities in the case of
surface interpolation. After standard regularization, locations where the
solution f originates a large error in the regularization term, are iden-
tified (this needs setting a threshold for the error in smoothness). A

second regularization step is then performed using the location of discon-

tinuities as boundary conditions.

In any case, one would like a more comprehensive and coherent theory
capable of dealing directly with the problem of discontinuities and the
problem of fusing information. So the challenge for a regularization
theory of early vision is to extend it beyond standard regularization

methods and their most obvious non-linear versions.

l.4 Stochastic Approach to Regularizing Early Vision

In this research, we have developed a rigorous approach to overcome part
of the ill-posedness of vision problems, based on Bayes estimation and
Markov Random Field models, that effectively deals with the problems faced
by the standard regularization approach, 1In this approach, the a priori
knowledge is represented in terms of an appropriate probability distribu-
tion, whereas in standard regularization a priori knowledge leads to
restrictions on the solution space. This distribution, together with a
probabilistic description of the noise that corrupts the observations,

allows one to use Bayes theory to compute the posterior distribution Pt g,
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which represents the likelihood of a solution f given the observations g.

In this way, we can solve the reconstruction problem by finding the esti-

mate £ which either maximizes this a posteriori probability distribution
(the 80 called Maximum a Posteriori or MAP estimate), or minimizes the
expected value (with respect to Pflg) of an appropriate error function.
The class of solutions that can be obtained in this way is much larger than

in standard regularization.

The price to be paid for this increased flexibility is computational
complexity. New parallel architectures and possibly hybrid computers of the
digital-analog type promise however to deal effectively with the com-

putational requirements of the methods proposed here.

We wish to emphasize here that our main thrust here is in development of
distributed algorithms suitable for parallel architectures, and on compre-

hensive testing on image data.

1.5 Phase I Technical Objectives

Our research objectives were to:

® develop new distributed algorithms for recovering structure from
motion and for discrimination of known or unknown objects from
highly cluttered background.

® assess feasibility of real-time operation using state-of-the-art
parallel processors

® evaluate performance using highly-cluttered image data containing

moving targets,
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2. IMAGES AS FUNCTIONS OF MARKOV RANDOM FIELDS

The key to success in the use of the proposed approach, is the ability

to find a class of stochastic models (that is, random fields) that have the

following characteristics:

(1)

(11)

(111)

(iv)

(v)

The probabilistic dependencies between the elements of the field
should be local. This condition 1is necessary if the field is to
be used to model surfaces that are only plecewise smooth; besi-
des, if it 1s satisfied, the reconstruction algorithms are likely
to be distributed, and thus, efficlently implementable in
parallel hardware.

The class should be rich enough, so that a wide variety of quali-
tatively different behaviors can be modeled.

The relation between the parameters of the models and the charac-
teristics of the corresponding sample fields should be relatively
transparent, so that the models are easy to specify.

It should be possible to represent the prior probability distri-
bution Pg explicitly, so that Bayes theory can be appiied.

It should be possible to specify efficient Monte Carlo proce-~
dures, both for generating sample fields from the distribution,
so that the capability of the model to represent our prior

knowledge can be verified, and to compute the optimal estimators.

A class of random fields that satisfies these requirements i{s the class

of Markov Random Fields (MRF's) on finite lattices. A MRF has the property

that the probability distribution of the configurations of the field can

always be expressed in the form of a Gibbs distribution:
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Pe(£) = 5 expl T; E(f)] (2.1) B
,*,«
’_‘_f.l 4
where Z is a normalizing constant, Ty is a parameter (known as the "natural "J!
AR
o
temperature” of the field) and the "Energy function” E(f) is of the form: E::\
N
3 [ -.‘J-I i
E(f) = I Vc(f) .
c
' T
where C ranges over the "cliques™ associated with the neighborhood system :,:f»
», o
\ of the field, and the potentials Vp(f) are functions supported on them (a -:;::
clique is either a single site, or a set of sites such that any two sites &
~~
PR
belonging to it are neighbors of each other). ﬁ{;}:
Il By
M
VAR
:
We will assume that the available observations g are obtained from a LA
L

typlcal realization f of the field by a degrading operation (such as

sampling) followed by corruption with i.1i.d. noise (the form of whose -:1
-
distribution is known), so that the conditional distribution can be written -,
as: R
oy
c&* it
P |£(g:f) = expl~a I 45(f,g4)] PRy
1eS ibv?
! where {¢4} are some known functions, and a is a parameter. The posterior Sii?-
L
; distribution 1s obtained from Bayes rule: "}*i“
AR
. R
1
Pg |g(f;g) = 7;-eXP[-Ep(f;g)] (2.2)
Ep(f3g) = 3= E(£) + a I o(f,gy) (2.9)
0 i€$
. It is important to note that the Markov structure is retained under
conditioning and that the posterior distribution is also a Gibbs ;;:{:
» distribution. d
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» Cost Functionals ;:xf
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b The Bayesian approach to the solution of reconstruction problems has )
®
been adopted by several researchers. In most cases, the criterion for eﬁf
\
l* ‘L
t? selecting the optimal estimate has been the maximization of the posterior %ﬁé
s
probability (the Maximum aposteriori or MAP estimate). It has been used,
ﬂ! for example, by Geman and Geman (1984) for the restoration of plecewise A
A%
constant images; by Grenander (1984) for pattern recognition, and by Elliot flxi'
- A
i NS
iﬁ et. al. (1983) and Hansen and Elliot (1982) for the segmentation of tex- et
| ]
tured images (a similar criterion - the maximization of a suitably defined ‘;‘st
o
likelihood function - has been used by Cohen and Cooper (1984) for the same Eh*f
AN
purposes). o
o
- RO
t: In some other cases, a performance criterion, such as the winimization N
al RN
I
of the mean squared error has been implicitly used for the estimation of 'th
« ;{‘f
particular classes of flelds. For example, for continuous-valued fields ..5,

'~
l..

with exponential autocorrelation functions, corrupted by additive white

- Gaussian noise, Nahi and Assefi (1972) and Habibi (1972) have used causal

P linear models and optimal (Kalman) linear filters for solving the
reconstruction problem.

.

f.-

a Although other criteria are possible (cf Morroquin, 1985), we have

af chosen the MAP criterion here for designing optimal estimators since this .

I S

criterion gives generally equivalent results, with the exception of very _5

[ . ,._'-"_

tf high noise situations, The performance of estimators using other criteria T

v would be an appropriate toplc for Phase II research. ::i:
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P 3. ESTIMATING STRUCTURE FROM MOTION \,:,.
§ ‘: :-‘.‘: 3
Y
Since the primary goal of image processing will be target detection, ‘_ir
Lg% ¢
- discrimination and monitoring, we can exploit the fact that the target :::i~
NN
. image will be moving relative to most of the rest of the image. :ﬁﬁ*-
4 ':v‘l"
et
. A common approach to the problem is the use of flow fields (for : -
LG
;A ‘t‘,‘.-' -
example, Ullman, 1981; Bruss and Horn, 1981; Williams, 1981, Hildreth, &f{E
. RO
b 1984; Adiv, 1984). These approaches generally assume deterministic models éﬁ?ﬁ
a2
or utilize standard regularization techniques. We have already alluded to ﬂ::'
\ !, . 4
h Y
: several problems encountered when using these approaches and the potential ;Q;:
>
AYe.
’ advantages of a statistically-based approach based on local interaction 3@&:
L Hanas
models. 3
- e
- o
. Reed, et al (1983) have developed a three—dimensional matched filtering SO
TN
'\.‘ a8
approach to moving target detection. However, it is limited to point ¥:;
A A
targets. Legters and Young (1982) developed an operator-based approach ;:2:-
(\“n‘l
Y] . * =
using foreground and background models and solved a least-squares minimiza- ;:i:.
o
tion problem. No statistical object model was used. Miller, et al (1985) é\‘f‘
- have studied the general moving target detection problem, restricted to iE:i_
'\}\
- point targets, and concluded that the uniformly most powerful detector, ::::.
. ':-. Y
invariant with respect to image intensity variations, consists of specific -
o spatial-temporal differencing schemes. In the sequal, we derive similar -
Ca
conclusions for a much more general object model.
7 ‘_--

We suggest that the MRF methodology may be employed to recover object 7?’

motion from successive images. The key to the approach lies in

appropriately defining the potential function.
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3.1 Optical Flow

Let vy(x,y), vy(x,y) be the components of the velocity vector at the
polnt (x,y) on the image. Then vy and vy can be estimated by using a flow

equation

X,y L, 3f(x,y) , 23f(x,y)
3% y Iy 3t

M(X)Yat) = Vx =0

where 9f(x,y)/9x and 3f(x,y)/3y are spatial gradients of the image inten-
sity at (x,y) and 9f(x,y)/9t is found by time differencing successive ima-~
ges. All terms are readily estimated by using numerical differencing
methods. The solution to this equation is a locus of points along a
straight line. By evaluating solutions around a neighborhood of (x,y), one
can determine estimates for vy (x,y) and vy(x,y) by the intersection of the

individual solutions over pixels within a neighborhood.

Flow field methods may not be optimal for the SDI problem, however.
The critical aspect of the tracking problem we are addressing is the abi-
lity to handle cluttered background and foreground noise at very low
signal/noise ratios. Methods to date are generally based on moving target
indicator (MTI) technology and use flow field analysis. These methods
assume smoothness properties which do not hold for objects covering only a
few pixels, when only a few grey levels are used, or for the case when
object velocities are on the order of one pixel/sample, which is likely to
occur in an SDI enviorment. Differencing operations are required which can
lead to large errors in high noise conditions. 1In these cases, detection
and tracking accuracy will be degraded by the effects of incorrect assump-

tions in the problem formulation.
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k: The approach we are studying avoids these problems by analyzing the ;:J'\
& N
image on a pixel-by-pixel basis, with no impicit smoothness assumptions. ._-:'~

N

. Smoothness may be employed explictly as required, for example to develop a ®
e S\
local Markov random field model. :*'
&‘- ‘&,
5 yt
~ ?‘ )
M

3.2 Batch Processing Formulation
" e

:
A

We are interested in recovering the intensity field of an object moving

“ in a highly cluttered environment. The object 1s modeled using a Gibbs ’:
b\ distribution of the form AN
o O
! L1
"X
Al
% =
l{a 1 h*\
v Pe = — exp(-Vc(£)/T] (3.1) ')
q"-.
3 R
) where z is a normalizing constant, f is the object intensity field, T is -.';{.-
r"’ i
4
i the "temperature”, and V.(f) is an appropriately chosen potential function. ;
A}
-
B We have experimented with several different potential functions, including f:'_
-l'\-f‘
;A "
a&'\ the Ising model, with the result that the following function -_f’:-i:
.J'., '-r':}
Wy
Ve(£) = | | £1 - £5] (3.2)
N Ny O
AN
o where Ny is the neighborhood of the 1t—h pixel and f; is the intensity of :;\:
» o
", . .\‘
- the i—t—Ll pixel, works reasonably well. In our research we have used a 4 - et
e
’” connected neighborhood consisting of the 4 adjacent pixels. The probabi- ::-:-:-
S A
» T
lity density P. describes the apriori information. o
. In order to process cluttered images we need a stochastic image model ,.\
Ay
LY t
:;. which accounts for object motion, background clutter, and image noise. We ‘::,‘:-
- gy
-
have used the following model for the observed image g at time step k: ’ }'.r
" R
i *
oy
AN
% o
"y ‘..:}
N
,. .—.
" %
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’l

---------- = et ',‘: I,," ,; ,‘;_..: AL J-"/\(_‘r_..-\‘r‘.r\-",\--_'4:",’,‘.- I‘.-;f-‘r‘.'.r.'-‘_-f"(,\i‘\f.'i'. !‘\f\aq(_‘-r



2

LY

-

F&E .

A

LR
\-.’-._'\)

A AT N e e e MU B B T O ST SINL JUPE NP S R Y

oy .

81(k) = by[1-s(fy, )] + 1, + ni(k) (3.3)

where by 1s the (fixed) background, iy indexes the pixels according to the
velocity of the object, and s(.) is a function which is one if the object
covers pixel iy at time step k and is zero otherwise. For a two-

dimensional field indexed by p,q:

Pk p - k vy

Qk = q - k vy
where vy, vy are orthogonal velocity components. Note that we make no
smoothness assumptions such as is done in visual flow field analysis. This

allows us to analyze images with only a relatively few number of pixels.

The noise njy(k) consists of two processes

ny(k) = ngqy + ngi (3.4)
where ng4 {s a time-invariant noise present at all time steps and nyj is a
time-varying noise. Both processes are assumed to be exponentially distri-
buted with known mean and variances and are mutually independent. By
assuming zero-mean Gaussian distributions, the problem becomes one of mini-

mizing the following energy function with respect to b and f:

E(f,g) = Ve(f) / T

+ %- iik } gi(k) - by [1-s(£4, 0] - £1, 12 (3.5)

where N {38 the sum of the variances of the two noise processes.

The minimization was carried out as follows:
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(1) An estimate of by was calculated as : by = b with b the mean image

intensity over the entire 1image field.
(11) Select a pixel i at random.

-

(111) Select a new estimate f; # f{ from the set of allowable intensities

using a uniformly distributed random variable.

(iv) Compute the resulting change in energy AE,

(v) If AE < 0, accept the change, i.e., set f; = f4,

(iv) 1f AE > 0, accept the change if exp (-AE) *» r, where r is a uni-
formly distributed random variable between 0 and 1l; otherwise,

leave f; unchanged.
(1iv) Repeat steps (1i1) - (vi).

Steps (ii) - (vi) comprise the Metropolis algorithm (Metropolis, et al
1953), which generates a regular, reversible Markov chain, The resulting

image configurations are distributed according to the Gibbs distribution

1

Minimization with respect to velocity was performed by an exhaustive
search over all possible velocities, using a course quantization. Note

that this minimization can be done using completely independent processors.
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We have conducted experiments on several different cases, with pro-

mising results. An example is shown in Figure (3.1), where a square 4x4
object 1is moving at the rate of one pixel/sample to the right over a clut-
tered 10x14 background and is viewed in noise. The object has intensity of
2 over a background whose mean intensity is 1 with an rms value of 0.5.

The additive noise has an rms value of 0.5 and T = 1. Four intensity
levels (0,1,2,3) are plotted. Figure (3.1) shows the actual object, actual
background (panel b) and 4 successive cluttered images of the moving object
(panels c-f). The object has essentially disappeared in the noise.
Recovery 1s shown in panels g-k: the object is fully recovered using only
16 iterations/pixel (we are assumung parallel implementation). The error
shown is Z (fy - f1)2 while the energy shown is E for a temperature of 1.
The initiil energy (using as b the mean pixel.intensity) was 601.017. The
minimum energy solution clearly recovers the Sfiginalrobject. Note that
this case corresponds to recovering the object in the time required for it

to move by one length.

The previous tests used the Metropolis algorithm to detect moving
objects. We have found that the algorithms may be simplified considerably
without any significant loss of accuracy by simplifying the iterations.
The simplification is to only accept changes which lead to a reduction in

the energy fuction.

An example of our results is given in Figures 3.2 - 3.6, In Figure

3.2, a series of six nolse-free images are shown in which a 3x3 object of
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Figure 3.1 (cont'd) Detection of Moving Object in Cluttered Background and Noise
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Figure 3.2 Noise - Free Images of Moving Object (v = (1,1)).
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Figure 3.5 Object Detection (at original position) for
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e intensity 2 moves over a 13x19 background of intensity 1 with velocity v =
- (1,1) pixel/sample. The object in 1ts original position over a background
!! of intensity 0 is shown in Figure 3.3. 1In Figure 3.3, a cluttered
. background is shown which was generated using Gaussian random noise with
rms value of 0.8. The intensities are quantized in the figure to four
i values (0,1,2,3). Noisy images were then generated by adding time-
invariant noise (rms = 0.8) and time-varying noise (rms = 0.4) to the image

comprised of the object over the cluttered background. The resulting ima-

EE ges are shown in Figure 3.4; the object has essentially disappeared in the

- noise. These six images were used in the detection algorithm to search for

Pt the presence of a moving object. The results are showan in Figure 3.5 and

- 3.6 In Figure 3.5, the estimated velocity matches the actual velocity and

;b the object is recovered, with only small error and is in the correct posi-

i tion. Three cases are shown for n=1, 6, 1l where n is the number of global
iterations (a global iteration is comprised of one iteration per pixel over

Ei the entire image).

l! In Figure 3.6, the results for the case of a velocity mismatch

: (v = (1,0)) are shown: two long slender objects are detected which are

53 aligned along the estimated velocity direction and are in the wrong posi-

s tion. However, the energy is higher than for the case of a velocity match,

R indicating that there is a velocity error. Thus, the minimum energy solu-

ii tion yilelds the correct velocity, as desired. The error values shown in

v the figures are the true (unobservable) fit error measured in terms of the

EE pixel-by-pixel differerce between the object estimate and the true object.
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3.3 Recursive Problem Formulation

During the course of our research we developed a new problem for-
mulation which yields improved results over the previous batch processing
approach. It is based on a recursive Bayes formulation to compute the

object conditional density, based on the observed images to date.

In our work we have used the following model:

(1) = B(1) [1-S(¥(1)] + ¥(iy) + ap(i) + ng(i) (3.6)
k= 1,2, « « &
i=1,2, « ¢« « .

where

¥ (i) = observation intensity at pixel { and time k

¥(ikx) = object intensity at pixel iy and time k. The index 1) depends

upon the motion of the object. Throughout we will set i; = i,

B(1) = background intensity at pixel i

nn(1) = time-invariant foreground noise

n(1) = time-varying foreground noise

0 ; Y(ig) =0
S(¥(ig)) = (3.7)
1 ; otherwise

Note that B(1i) 1is time~invariant, Also, without loss of generality we
take ny(1) = 0. We will assume that nyp(1) and nn(i) are mutually indepen-
dent gaussian zero mean processes, uncortelated over both space and time,

with

=23~
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E [ng(1)2] = N; for all k
E [ng(1)2] = Ny
Let ¥ = {¥Y(1)}
Qk = {‘bk( i)}
By = {B(1)}

Then we are interested in the probability

P(¥, B[ &y, 05, « « ., 0p)

By Bayes' Rule we get the recursion

P(®n | ¥, B, &), ., &) P(¥, B| &) . . &)
PCY, B o], .., o) = ol ¥, lw n-1 , Bl % n-1
P(¢n' 10..61-1__1)

We start with the initial conditions, using as apriori probability

1

PO(W) B) = zg

exp| - -é_lul(v) - %Euz(m

where Uj(.) and Uy(.) are appropriate energy functions. For example, we
can utilize Ising potentials. These potentials are completely arbitrary

and yield a Gibbs distribution.

Let

Po(¥, B)

1
3o exp (- U, B

Then
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P(9 | ¥, B) Py(¥, B)

P(Y, B[ 0)) = P(%))

'y

J
l"‘l
n

The denominator is independent of ¥ and B. Thus, if we want a point j:t
\
,
\: estimate (Maximum Aposterioril e.g.) we need only evaluate the numerator. ’:‘
: -
L4 oS
We will assume we are looking for a MAP estimator here. Neglecting terms Y
gg independent of ¥ and B we get a simplified form. ::'
o
~ oy
o) -
N Now g
[
% ®1(1) = B(1) [1-S(¥(1)] + ¥(1) + ny(1) 3
pa
Recall that there is no time-varying noise component here. E;
o
3 2
We now introduce our motion model. We assume that the object we are b
1.
o J'.\
:; interested in tracking 1s associated with ¥ in the following way: )
16 -
7
-
a (a) 1f ¥(ix) > 0, then the object is within pixel i, at time k 'a.’
% ¥
Sy
- (b) if ¥(iy) = 0, then the object is not within pixel 1, at time k N
r-:' :":.
- .
0
We further require that ¥(ig) » 0 for all 1,k. ‘4
" %
N N
We assume here constant rectilinear motion, which is consistent with {{
the space-based target tracking problem over a short time period. Over a 'i:
4
., longer time period, the tracking algorithm can be used on successive data !_,
windows to achlieve accurate tracking for non-rectilinear motion. Thus we 'iﬁ
can write, in two dimensions :;;
®
2 ¥(ik, J) = ¥(1-k vy, j-k vy) N
:-} 3
N
™ e
N where vy, vy are the velocity components. This is the discrete form of the 5\
optical flow equation. Returning to our development we find that the con- %:
~ N
~ N
o
3
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! :.'._ ditional density for the first image {is

u P(%, I ¥, B) = I} P“O {¢1(i) - B(1) [1-S(¥(1)]) - ¥(i)}

: ,:J‘ .
. .”': where P“O is the probability density of np. Combining these results, we ,
o ;
' " find that the aposteriori density given the first image may be written as a ‘
" o Gibbs distribution

P(Y, B| ) = _i_l exp (- E|(¥g, B, ¢,)}
PO ™ h

K :

’ where i
P |

2 1 ' 2
T E)(Yo, B, 91) = —- L {e1(1) - B(L) [1-8(¥g(1))] = ¥o(ip} v
By ] |
3: o
" d
3 -

AN \ Y

5 i + Ug(¥, B)

- We now go to the next time step. The second image is modeled as
W 95(1) = B(1) [1-S(¥g(1p)] + ¥g(ip) + np(1) + ny(1)

:: - By subtracting ¢ (1) we get

- ~
N "
~ :p

) 29(1) - (1) = B(1) [-S(¥g(12)) + S(¥o(1i))]

1i ;: + wo(iz) - WO(il) + nz(i)

_': Now

: P(¢5 | ¥, B, &) p(¥, B[ o)) 3
. P(Y, B| &, ¢,) = .
o, (¥, B| ¢y, 9y PO, 3D

L, e |
Y .
L. )
i e and

4

-s: :‘-

3
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2 Pn2 {Qz(i) - ®)(1) + B(1) [s(¥(1ip)) - S(¥(1))] + ¥(i) - ¥(i)}
where Pnz(.) is the probability density of nj.

Thus

Y
]

»

"y

P(wy B‘ 02) = ;% exp {- E(wﬂy B, Ql) ®2)}

Mo bl

where

E(wOs B, ol’ ®2) = U() (WO) B)

[ARTCULENE WL

1 g 2
+ g % {®)(1) - By) [1-S(¥(1)] - ¥(1)}

l‘- '.' l‘.

| 2
+ -75}— L (05(1) - &.(1) + B(1) [S(¥(1p)) - SC¥(1))] + ¥(1) - ¥(1p)}
i

>N

Y
.

>

NS

We can see immediately by induction that

e o, _.‘_ K

P(Y, B| oy, «., 0 = %; exp {- E(¥y, B, &, ... )}

where

E(“’Or B) °1, ceey ®n) = UO(W(), B)

1 2
* g } {1(1) - B(1) [1-S(¥(1))] - ¥(1)}

‘ >
2; LoL {0(1) - 6,(1) + B(L) (S(¥(1R)) - SCE(I)] + ¥(1) - ¥(1,)}
1 k 1

(3.8)

h)
.};bt'J

AT
- »

This expression 1s to be minimized with respect to ¥n, B, vy and vy,

Note that E is nonlinear in Y.

'-I.'JﬂJ‘.J\;' St
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Minimization can be done for example using gradient approximations or
stochastic approximations or simulated annealing. 1In our work to date we
have used the randomized descent method described in Section 3.3, which is

highly parallelizable.

If we have no prior information on B, then [l (Yo, B) = Uy (¥p).
However, if we assume, say, that object i{s generally brighter that
background we can construct an appropriate potential function. Here, we

have assumed no prior information on B.

Experimental Results

We present results on the same case as presented im Figures 3.2 - 3.6,
in which there was some error in recovering the object. Figure 3.7 shows
the object at its original position (k = |) which is moving with velocity
v = (l,1) pixel/sample. Also shown is the background which had mean one
and mms 0.8 (gaussian). Figure 3.8 shows successive cluttered images in
which the object is moving over the cluttered background in additive noise
(NO = 0.64, N| = 0.16). Figure 3.9 shows the object recovery for three
different values of estimated velocity after n global iteratios. When the
velocity matches (panel (a)), the global minimum energv is achieved and the
object is recovered exactly. This {s an improvement {n performance over
the results presented in Figure 3.5. Note that no more than |1 global
iterations are required for recoverv. The indicated error is the true sum-

squared pixel error.

Since recovery was pertfect for this case, we {ncreased the nolise to

og = 1.0, Ng = 1, Np = 0.25, a decrease of 6% in signal/noise ratio for
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each noise source. The cluttered images are shown in Figure 3.10 and object
recovery is shown in Figure 3.11. One object pixel is in error and there

are three pixel artifacts.

3.4 Parallel Implementations

The randomized (Monte Carlo) procedure we have used for finding MAP
solutions to the Bayesian estimation problem can be accelerated signifi-
cantly by using a parallel architecture for implementation. 1If a processor
is assigned to each pixel, for example, then the processing time will be
reduced by a factor of n/k, where n is the total number of pixels and k is
the chromatic number of the lattice. The chromatic number is equal to the
minimum number of colors needed to color the sites of the lattice in such a
way that no two neighbors have the same color. As an example, in our
4-connected neighborhood used for experimentation the chromatic number is

2.

To be more specific, consider solving for the MAP estimate by mini-
mizing (3.8) using a massively parallel architecture such as the Connection
Machine (Hillis, 1985), which is a Single Instruction Multiple Data (SIMD)
array processor consisting of 256,000 processing units. Each unit has a
single-bit arithmetic/logical unit and about 4k bits of storage and is
organized in a 4-connected lattice that 1Is 512 elements square. At each
cycle of the machine, which we assume here to have a duration of one micro-
second, an instruction is executed by each processor and a single bit 1is
transmitted to its neighbors. This means that the first-order Markov field

we have assumed here can be efficiently implemented.
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-’ Increased Noise (og = 1, Ng = 1, Ny = 0.25).
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We assume that 16 cycles of a single-bit processor are required to per-
form a single 16-bit addition, subtraction or comparison; 256 cycles are
required to perform multiplication or division; 512 cycles are required to
generate a uniformly-distributed random variable; and 16 cycles are needed
for memory transfer. We also assume a chromatic number of two, an overhead
factor of two, 20 global iterations,and six sequential images to be ana-
lyzed. The resulting cycle count for a solution is 1,699,840 which yields
a solution time of about 1.7 seconds. Note that for n pixels the number of

processors required is 2 n v where v is the number of possible velocity

combinations to be checked.
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4., SUMMARY AND CONCLUSIONS

This research has been focused on the moving target detection and
tracking problem using image analysis techniques., We were particularly
interested in a severely cluttered enviromment in which high degrees of
background and foreground noise were present. A probabilistic approach has
been developed using an integrated Bayesian approach. Prior knowledge is
employed using a Markov random field model in the form of a Gibbs distribu-
tion. Using probabilistic noise models, the aposteriori distribution is
also Gibbs. No knowledge of the target is presumed, other than a local
statistical model involving an arbitrarily-constructed potential function

which then specifies the prior distribution.

The framework we use has been developed recently by several researchers
and has yielded promising results for image segmentation, boundary detec-
tion and clutter rejection. 1In this research we have, so far as we know,
extended the framework to include motion analysis for the first time. We
develop both a batch processor and a recursive processor; the recursive
processor yields superior results since the posterior conditional distribu-
tion is theoretically known exactly. The batch processor, on the other

hand, is a smoother, and ylelds ordinary least-squares solutions.

We have developed parallelizable algorithms for computing the maximum
aposterlori estimate of the image fleld containing the target. These
algorithms are of the Monte Carlo type and are closely related to the
Metropolis algorithm. Numerical results are presented to demonstrate the

potential of this approach in solving very difficult target tracking
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_:' ;. problems in an extremely noisy environment. We speculate that the results
,;' . are close to the optimum in terms of accuracy in recovery of the unknown
e~ moving target.

.\l

-
:A\. .\

o Parallel implementation is discussed and an example given to demonstrate
"

feasible solution times on current array processing hardware.

e

v

L One of the most critical aspects of the problem 1s how to choose the
o ) svstem parameters to optimize performance. This 1s of particular impor-
-~ Ny tance when autonomous operation is required, as in SDI. Nonlinear opti-
AT

. \‘ - '
.- mization is required, once the interaction effects between algorithm
WRREN parameters and measurable image parameters (such as statistical variation,

correlation, etc) is worked out. This problem is virtually untouched in

the literature and would be a suitable topic for Phase II research.
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